Neural Control using EEG as a BCI Technique for Low Cost Prosthetic Arms
نویسندگان
چکیده
There have been significant advancements in brain computer interface (BCI) techniques using EEG-like methods. EEG can serve as non-invasive BMI technique, to control devices like wheelchairs, cursors and robotic arm. In this paper, we discuss the use of EEG recordings to control low-cost robotic arms by extracting motor task patterns and indicate where such control algorithms may show promise towards the humanitarian challenge. Studies have shown robotic arm movement solutions using kinematics and machine learning methods. With iterative processes for trajectory making, EEG signals have been known to be used to control robotic arms. The paper also showcases a case-study developed towards this challenge in order to test such algorithmic approaches. Non-traditional approaches using neuro-inspired processing techniques without implicit kinematics have also shown potential applications. Use of EEG to resolve temporal information may, indeed, help understand movement coordination in robotic arm.
منابع مشابه
A Low Cost Eeg Based Bci Prosthetic Using Motor Imagery
Brain Computer Interfaces (BCI) provide the opportunity to control external devices using the brain ElectroEncephaloGram (EEG) signals. In this paper we propose two software framework in order to control a 5 degree of freedom robotic and prosthetic hand. Results are presented where an Emotiv Cognitive Suite (i.e. the 1 st framework) combined with an embedded software system (i.e. an open source...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملAn Approach for Pattern Recognition of EEG Applied in Prosthetic Hand Drive
For controlling the prosthetic hand by only electroencephalogram (EEG), it has become the hot spot in robotics research to set up a direct communication and control channel between human brain and prosthetic hand. In this paper, the EEG signal is analyzed based on multi-complicated hand activities. And then, two methods of EEG pattern recognition are investigated, a neural prosthesis hand syste...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملDeveloping a 3- to 6-state EEG-based brain-computer interface for a robotic manipulator control
Recent developments in BCI techniques have demonstrated high-performance control of robotic prosthetic systems primarily via invasive methods. In this work we develop an electroencephalography (EEG) based noninvasive BCI system that can be used for a similar, albeit lower-speed, robotic manipulator control and a signal processing system for detecting user’s mental intent based on motor-imagery ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014